王教授推荐学习
wwww6662003/wwww6662003.github.io: 个人主页 https://github.com/wwww6662003/wwww6662003.github.io 王维 · My New Hugo Site https://wwww6662003.github.io/ D:\Scoop\apps\Hugo\0.101.0\Sites\blog\public 王教授推荐三篇文章学习: 初步订在6月29号上午,每个人准备一下,咱们进行学习交流,大家看看如何? WIREs CMS | 基于深度学习的药物重定位:方法、数据库和应用 https://mp.weixin.qq.com/s/nounUr5T5xjKmobPTOT5Wg 深度学习从入门到精通 - 知乎 https://www.zhihu.com/column/c_1375953490200608768 Nat. Mach. Intel. | 用机器学习发现肉眼不可见的新冠肺部长期病变 https://mp.weixin.qq.com/s/YXwM_UN1R3X952DuAmJx7A BIB | 预测基于相似性的药物-靶点相互作用的异构网络嵌入框架 https://mp.weixin.qq.com/s/XsSf_78GqYPNwvyDbnLTzQ 一、(文章源码)Nat. Mach. Intel. | 用机器学习发现肉眼不可见的新冠肺部长期病变 https://mp.weixin.qq.com/s/YXwM_UN1R3X952DuAmJx7A An interpretable deep learning workflow for discovering subvisual abnormalities in CT scans of COVID-19 inpatients and survivors https://www.nature.com/articles/s42256-022-00483-7.pdf DLPE-method/colab.ipynb at master · LongxiZhou/DLPE-method https://github.com/LongxiZhou/DLPE-method/blob/master/colab.ipynb 1.文章名字:An interpretable deep learning workflow for discovering subvisual abnormalities in CT scans of COVID-19 inpatients and survivors 2.源码:LongxiZhou/DLPE-method: A comprehensive platform for analyzing pulmonary parenchyma lesions on chest CT,一个可解释的深度学习工作流程,用于发现covid-19住院患者和幸存者的亚视觉异常,https://github.com/LongxiZhou/DLPE-method 3.数据集:DLPE method - Google 云端硬盘 https://drive.google.com/drive/folders/16ZvZfhqMmuF7wqNPKUOntw2P-Mfx5C4l 二、(文章)WIREs CMS | 基于深度学习的药物重定位:方法、数据库和应用 https://mp.weixin.qq.com/s/nounUr5T5xjKmobPTOT5Wg https://wires.onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.1597 https://www.researchgate.net/publication/358519581_Deep_learning_for_drug_repurposing_methods_databases_and_applications 可下载 文章名字:Deep learning for drug repurposing: Methods, databases, and applications 三、(源码NEDTP-main.zip)BIB | 预测基于相似性的药物-靶点相互作用的异构网络嵌入框架 https://mp.weixin.qq.com/s/XsSf_78GqYPNwvyDbnLTzQ https://pubmed.ncbi.nlm.nih.gov/34373895/ https://www.x-mol.com/paper/1425225538196979712?adv https://pubmed.ncbi.nlm.nih.gov/34373895/ 1.文章名字:A heterogeneous network embedding framework for predicting similarity-based drug-target interactions,PMID: 34373895 DOI: 10.1093/bib/bbab275 2.源码:LiangYu-Xidian/NEDTP https://github.com/LiangYu-Xidian/NEDTP